Prove the following identities:
tan A(1+tan2A)2+cot A(1+cot2A)2=sin A cos A
LHS=tan A(1+tan2A)2+cot A(1+cot2A)2
=tan A(sec2A)2+cot A(cosec2A)2
=tan Asec4A+cot Acosec4A
=sinAcosA×cos4A+cosAsinA×sin4A
=sinA cos3A+cosA sin3A
=sinAcosA(cos2A+sin2A)
=sinAcosA=RHS