Given that,
x=asecθ+btanθ
y=atanθ+bsecθ
LHS
x2−y2
=(asecθ+btanθ)2−(atanθ+bsecθ)2
=a2sec2θ+b2tanθ+2absecθtanθ−a2tan2θ−b2sec2θ−2abtanθsecθ
=a2sec2θ+b2tanθ−a2tan2θ−b2sec2θ
=a2sec2θ−a2tan2θ+b2tanθ−b2sec2θ
=a2(sec2θ−tan2θ)+b2(sec2θ−tan2θ)
=(sec2θ−tan2θ)(a2−b2)
=1×(a2−b2)
=(a2−b2)
Hence proved.