Prove the following identities:
sec4A(1−sin4A)−2tan2A=1
LHS=sec4A(1−sin4A)−2tan2A
=sec4A−sin4A sec4A−2tan2A
=sec4A−sin4A×1cos4A−2tan2A
=sec4A−tan4A−2tan2A
=[(sec2A)2−(tan2A)2]−2tan2A
=(sec2A−tan2A)(sec2A+tan2A)−2tan2A
=(sec2A−tan2A)(sec2A+tan2A)−2tan2A
(Since sec2A−tan2A=1)
=sec2A+tan2A−2tan2A
= sec2A−tan2A=1=LHS