Prove the following identities:
(sec A−cosec A)(1+tan A+cot A)=tan A sec A−cot A cosec A
LHS=(sec A−cosec A)(1+tan A+cot A)
=(1cosA−1sinA)(1+sinAcosA+cosAsinA)
=(sinA−cosAsinAcosA)(1+sin2+cos2AsinAcosA)
=(sinA−cosAsinAcosA)(1+1sinAcosA)
=(sinA−cosAsinAcosA)(1+sinAcosAsinAcosA)
=(sinA−cosA)(sinAcosA+1)sinA2cos2A
=sin2AcosA+sinA−sinAcos2A−cosAsinA2cos2A
=(1−cos2A)cosA+sinA−sinA(1−sin2A)−cosAsinA2cos2A
=cosA−cos3A+sinA−sinA+sin3A−cosAsinA2cos2A
=sin3A−cos3AsinA2cos2A
=sin3AsinA2cos2A−cos3AsinA2cos2A
=sinAcos2A−cosAsinA2
=tan A sec A−cot A cosec A=RHS