wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities:
a2(b+c)a32abc=(b+ca)(c+ab)(a+bc).

Open in App
Solution

L.H.S

=a2(b+c)a32abc

=a2(b+c)+b2(a+c)+c2(a+b)a3b3c32abc

=a2b+a2c+b2a+b2c+c2a+c2ba3b3c32abc

=(a3+ab2+ac22abc)+(b3+bc2+a2b)+(c3+ca2+cb2)

Here to make same commom factor we add and subtract the term

=a(a2b2c2+2bc)+(b(a2b2+c2)2bc2+2b2c)+(2bc22b2c+c(a2c2+b2))

=a(a2b2c2+2bc)+b(a2b2c2+2bc)+c((a2b2c2+2bc)

=(a2b2c2+2bc)(b+ca)

To make common factor as a+cb we can add or subtract as

=(a2+acabac+abb2+bc+bcc2)(b+ca)


=(a2+acab)+(abb2+bc)+(bcacc2)

=((a(a+cb))+(b(ab+c))+(c(a+cb)))(b+ca)

=(a+bc)(c+ab)(b+ca)

R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
(x+y)^3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon