LHS =(cosec θ−cotθ)2=(1sinθ−cosθsinθ)2=(1−cosθ)2sin2θ=(1−cosθ)21−cos2θ=1−cosθ1+cosθ
=RHS
(ii)
LHS : cosA1+sinA+1+sinAcosA=cos2A+(1+sinA)2(1+sinA)(cosA)
=1+sin2A+cos2A+2sinA(1+sinA)(cosA)=2+2sinA(1+sinA)(cosA)
=2(1+sinA)(1+sinA)(cosA)=2cosA=2secA
=RHS
(iii)
LHS : tanθ1−cosθ+cotθ1−tanθ
=sinθcosθsinθ−cosθsinθ+cosθsinθcosθ−sinθcosθ
=1sinθ−cosθ[sin2θcosθ−cos2θsinθ]
=[1sinθ−cosθ][sin3θ−cos3θsinθcosθ]
=sin2θ+cos2θ+sinθcosθsinθcosθ=1+sinθcosθsinθcosθ
=secθcosec θ+1
=RHS
(iv)
1+secAsecA=1+1cosA1cosA=cosA+11
=(cosA+1)(1−cosA)1−cosA
=sin2A1−cosA
=RHS
(v) cosA−sinA−1cosA+sinA−1=cosAsinA−sinAsinA+1sinAcosAsinA+sinAsinA+1sinA
=cotA−1+cosec AcosA+1−cosec A
(cotA−1+cosec A)2(cotA)2−(1−cosec A)2
=(2cosec A−2)(cosec A+cotA)(−1−1+2cosA)
=cosec A+cotA
=RHS
(vi)
√(1+sinA)(1+sinA)(1−sinA)(1+sinA)
=1+sinAcosA
=secA+tanA
=RHS
(vii)
sinθ−2sin3θ2cos3θ−cosθ=sinθ(1−2sin2θ)cosθ(2cos2θ−1)
=tanθ[(1−2sin2θ)2−2sin2θ−1]
=tanθ= RHS
(viii)
(sinA+cosec A)2+(cosA+secA)2
=sin2A+cosec2A+2sinA⋅cosec A+cos2A+sec2A+2sec⋅cosA
=1+(1+cot2A+1+tan2A)+2+2
=7+tan2A+cot2A
=RHS
(ix)
LHS : (cosec A−sinA)(secA−cosA)
=(1sinA−sinA)(1cosA−cosA)
=(1−sin2AsinA)(1−cos2AcosA)=(cos2A)(sin2A)sinAcosA
=sinAcosA
RHS : 1tanA+cotA=sinAcosAsin2+cos2A=sinAcosA
∴LHS=RHS
(x)
LHS : 1+tan2A1+cot2A=1+sin2Acos2A1+cos2Asin2A=1cos2A1sin2A=sin2Acos2A=tan2A
RHS : (1−tanA1−cotA)2=1+tan2−2tanA1+cot2A−2cotA
=sec2A−2tanAcosec 2A−2cotA
=1−2sinAcosAcos2A1−2sinAcosAsin2A=sin2Acos2A=tan2A
∴LHS=RHS