wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

(i) (cosec θcotθ)2=1cosθ1+cosθ

(ii) cosA1+sinA+1+sinAcosA=2secA

(iii) tanθ1cotθ+cotθ1tanθ=1+secθcosec θ
[Hint: Write the expression in terms of sinθ and cosθ

(iv) 1+secAsecA=sin2A1cosA
[Hint: Simplify LHS and RHS separately].

(v) cosAsinA1cosA+sinA+1=cosec A+cotA,
Using the identity cosec2A=1+cot2A

(vi) 1+sinA1sinA=secA+tanA

(vii) sinθ2sin3θ2cos3θcosθ

(viii) (sinA+cosec A)2+(cosA+secA)2=7+tan2A+cot2A

(ix) (cosec AsinA)(secAcosA)=1tanA+cotA
[Hint: Simplify LHS and RHS separately]

(x) (1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A

Open in App
Solution

(i)
LHS =(cosec θcotθ)2=(1sinθcosθsinθ)2=(1cosθ)2sin2θ
=(1cosθ)21cos2θ=1cosθ1+cosθ

=RHS


(ii)
LHS : cosA1+sinA+1+sinAcosA=cos2A+(1+sinA)2(1+sinA)(cosA)

=1+sin2A+cos2A+2sinA(1+sinA)(cosA)=2+2sinA(1+sinA)(cosA)

=2(1+sinA)(1+sinA)(cosA)=2cosA=2secA

=RHS


(iii)
LHS : tanθ1cosθ+cotθ1tanθ

=sinθcosθsinθcosθsinθ+cosθsinθcosθsinθcosθ

=1sinθcosθ[sin2θcosθcos2θsinθ]

=[1sinθcosθ][sin3θcos3θsinθcosθ]

=sin2θ+cos2θ+sinθcosθsinθcosθ=1+sinθcosθsinθcosθ

=secθcosec θ+1
=RHS

(iv)
1+secAsecA=1+1cosA1cosA=cosA+11

=(cosA+1)(1cosA)1cosA

=sin2A1cosA

=RHS


(v) cosAsinA1cosA+sinA1=cosAsinAsinAsinA+1sinAcosAsinA+sinAsinA+1sinA

=cotA1+cosec AcosA+1cosec A

(cotA1+cosec A)2(cotA)2(1cosec A)2

=(2cosec A2)(cosec A+cotA)(11+2cosA)

=cosec A+cotA
=RHS


(vi)
(1+sinA)(1+sinA)(1sinA)(1+sinA)

=1+sinAcosA

=secA+tanA
=RHS


(vii)
sinθ2sin3θ2cos3θcosθ=sinθ(12sin2θ)cosθ(2cos2θ1)

=tanθ[(12sin2θ)22sin2θ1]

=tanθ= RHS


(viii)
(sinA+cosec A)2+(cosA+secA)2
=sin2A+cosec2A+2sinAcosec A+cos2A+sec2A+2seccosA
=1+(1+cot2A+1+tan2A)+2+2
=7+tan2A+cot2A
=RHS


(ix)
LHS : (cosec AsinA)(secAcosA)

=(1sinAsinA)(1cosAcosA)

=(1sin2AsinA)(1cos2AcosA)=(cos2A)(sin2A)sinAcosA

=sinAcosA

RHS : 1tanA+cotA=sinAcosAsin2+cos2A=sinAcosA

LHS=RHS


(x)
LHS : 1+tan2A1+cot2A=1+sin2Acos2A1+cos2Asin2A=1cos2A1sin2A=sin2Acos2A=tan2A

RHS : (1tanA1cotA)2=1+tan22tanA1+cot2A2cotA

=sec2A2tanAcosec 2A2cotA

=12sinAcosAcos2A12sinAcosAsin2A=sin2Acos2A=tan2A

LHS=RHS

flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon