Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
sinθ-2sin3θ2cos3θ-cosθ=tanθ
Proof:
Consider the LHS of the given expression.
LHS=sinθ-2sin3θ2cos3θ-cosθ=sinθ(1-2sin2θ)cosθ(2cos2θ-1)=sinθcosθ·1-2sin2θ2(1-sin2θ)-1Usecos2θ=1-sin2θ=sinθcosθ·1-2sin2θ2-2sin2θ-1=sinθcosθ·1-2sin2θ1-2sin2θ=sinθcosθ=tanθ∵sinθcosθ=tanθ=RHS
Hence, proved.