To prove : 1+cos22x=2(cos4x+sin4x)
L.H.S. =1+cos22x
=1+(cos2x−sin2x)2
{∵cos 2x=cos2x−sin2x}
=1+cos4x+sin4x−2cos2 x sin2 x
=(cos2 x+sin2 x)2+cos4x+sin4x
−2 cos2 x sin2 x [∵cos2 x+sin2 x=1]
=cos4x+sin4x+2cos2 x sin2 x+cos4 x+sin4 x −2 cos2 x sin2 x
=2(cos4 x+sin4 x)
= R.H.S.
Hence, proved.