wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identity :
(1+cotA+tanA)(sinAcosA)=secAcsc2AcscAsec2A

Open in App
Solution

prove :
(1+cotA+tanA)(sinAcosA)=secAcose2AcosecAsec2A
LHS =(1+cotA+tanA)(sinAcosA)
=(1+cosAsinA+sinAcosA)(sinAcosA)
=(sinA.cosA+cos2A+sin2AsinA.cosA)(sinAcosA)
=(sinA.cosA+1sinA.cosA)(sinAcosA)
RHS =secAcosec2AcosecAsec2A
=1/cosA1/sin2A1/sinA1/cos2A
=sin2AcosAcos2AsinA
=sin3Acos3AsinA.cosA
=(sinAcosA)(sin2A+cos2A+sinA.cosA)sinA.cosA
=(sinAcosA)(1+sinA.cosA)sinA.cosA
hence, LHS = RHS


1167742_1248145_ans_7b205761b0c64a689956db654cdd378d.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon