wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identity:

(cos α+cosβ)2+(sinα+sinβ)2
=4cos2(αβ2)

Open in App
Solution

To prove:
(cos α+cosβ)2+(sinα+sinβ)2
=4cos2(αβ2)

L.H.S. = (cos α+cosβ)2+(sinα+sinβ)2

=cos2 α+cos2β+2cosα cosβ+sin2α+sin2 β+2sin α sinβ

=(cos2α+sin2α)+(cos2β+sin2β)
+2(cos α cos β+sin α sin β)

=1+1+2 cos(αβ)

=2+2 cos(αβ)

=2{2 cos2(αβ2)} {cos2θ=2cos2 θ1}

=4cos2(αβ2)

= R.H.S.

Hence, proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon