To prove:
(cos α+cosβ)2+(sinα+sinβ)2
=4cos2(α−β2)
L.H.S. = (cos α+cosβ)2+(sinα+sinβ)2
=cos2 α+cos2β+2cosα cosβ+sin2α+sin2 β+2sin α sinβ
=(cos2α+sin2α)+(cos2β+sin2β)
+2(cos α cos β+sin α sin β)
=1+1+2 cos(α−β)
=2+2 cos(α−β)
=2{2 cos2(α−β2)} {∵cos2θ=2cos2 θ−1}
=4cos2(α−β2)
= R.H.S.
Hence, proved