To prove: 1−cos2x+sin2x1+cos2x+sin2x=tanx
L.H.S.
=1−cos2x+sin2x1+cos2x+sin2x
=2sin2x+sin2x2cos2x+sin2x[∵cos2x=1−2sin2xand cos2x=2cos2x−1]
=2sin2x+2sinxcosx2cos2x+2sinxcosx (∵sin2x=2sinxcosx
=2sinx(sinx+cosx)2cosx(cosx+sinx)
=tanx
=R.H.S.
Hence proved.