wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following identity:
(b+c)3+(c+a)3+(a+b)33(b+c)(c+a)(a+b)=2(a3+b3+c33abc).

Open in App
Solution

L.H.S=(b+c)3+(c+a)3+(a+b)33(b+c)(c+a)(a+b)
=b3+c3+3b2c+3bc2+c3+a3+3c2a+3ca2+a3+b3+3a2b+3ab23(b+c)(c+a)(a+b)
=2(a3+b3+c3)+3b2c+3bc2+3c2a+3ca2+3a2b+3ab23(b+c)(c+a)(a+b)+6abc6abc
=2(a3+b3+c3)+3(b2c+bc2+c2a+ca2+a2b+ab2+2abc)3(b+c)(c+a)(a+b)6abc
=2(a3+b3+c3)+3(b+c)(c+a)(a+b)3(b+c)(c+a)(a+b)6abc
=2(a3+b3+c3)6abc
=2(a3+b3+c33abc)
=R.H.S



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon