Prove the following identity:
(sin 3x+sin x)sin x+(cos 3x−cos x)cos x=0
To prove:
(sin 3x+sin x)sin x+(cos 3x−cos x)cos x=0
L.H.S.=(sin 3x+sin x)sin x+(cos 3x−cos x)cos x
⎡⎢
⎢
⎢⎣∵sin C+sin D=2 sinC+D2cosC−D2cos C−cos D=−2sinC+D2sinC−D2⎤⎥
⎥
⎥⎦
=2 sin2x cos x sin x+(−2 sin 2x.sin x cos x)
=2 sin2x cos x sin x−2 sin 2x cos x sin x)
=0
=R.H.S.
Hence, proved.