Prove the following: If tanA=34, then sinA·cosA=1225
Proof:
A right angle triangle ∆ABC is shown,
By using the Pythagoras theorem,
AC2=BC2+AB2=32+42=9+16=25∴AC=25=5
The trigonometric ratios sinAandcosA are computed as,
sinA=PerpendicularHypotenuse=BCAC=35cosA=BaseHypotenuse=ABAC=45
∴sinA·cosA=35·45=1225
Hence proved.
Evaluate :cos48°-sin42°
Write = or ≠ in the place holder.18□34