1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Complementary Trigonometric Ratios
Prove the fol...
Question
Prove the following :
(iv)
cos
(
90
∘
−
A
)
sin
(
90
∘
−
A
)
tan
(
90
∘
−
A
)
=
sin
2
A
Open in App
Solution
L.H.S
=
cos
(
90
∘
−
A
)
sin
(
90
∘
−
A
)
tan
(
90
∘
−
A
)
We have ,
tan
A
=
1
cot
A
=
cos
(
90
∘
−
A
)
sin
(
90
∘
−
A
)
cot
(
90
∘
−
A
)
We know that,
cos
(
90
−
θ
)
=
sin
θ
sin
(
90
−
θ
)
=
cos
θ
cot
(
90
−
θ
)
=
tan
θ
∴
cos
(
90
∘
−
A
)
sin
(
90
∘
−
A
)
cot
(
90
∘
−
A
)
=
sin
(
A
)
cos
(
A
)
t
a
n
(
A
)
=
sin
(
A
)
cos
(
A
)
s
i
n
(
A
)
cos
(
A
)
--------------(
tan
A
=
sin
(
A
)
cos
A
)
=
sin
(
A
)
sin
(
A
)
=
sin
2
(
A
)
=R..H.S
∵
cos
(
90
∘
−
A
)
sin
(
90
∘
−
A
)
tan
(
90
∘
−
A
)
=
sin
2
(
A
)
Hence proved
Suggest Corrections
0
Similar questions
Q.
cos
(
90
−
A
)
sin
(
90
−
A
)
tan
(
90
−
A
)
=
Q.
Prove that
cos
(
90
−
A
)
⋅
sin
(
90
−
A
)
tan
(
90
−
A
)
=
sin
2
A
.
Q.
Prove the following :
(i) sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
(ii)
cos
90
°
-
θ
sec
90
°
-
θ
tan
θ
cosec
90
°
-
θ
sin
90
°
-
θ
cot
90
°
-
θ
+
tan
90
°
-
θ
cot
θ
=
2
(iii)
tan
90
°
-
A
cot
A
cosec
2
A
-
cos
2
A
=
0
(iv)
cos
90
°
-
A
sin
90
°
-
A
tan
90
°
-
A
=
sin
2
A
(v) sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1