Keeping in view the answer involving ax−by+cz we multiply C2,C3 and C4 by a,b,c respectively and divide Δ by abc
∴Δ=1abc∣∣
∣
∣
∣∣0axbycz−x0bcbc−y−ac0ac−z−ab−ab0∣∣
∣
∣
∣∣
Apply C2−C3+C4
Δ=1abc∣∣
∣
∣
∣∣0ax−by+czbycz−x0bcbz−y00ac−z0−ab0∣∣
∣
∣
∣∣
Expand with 2nd column hence −ive sign.
∴Δ=−(ax−by+cz)abc∣∣
∣∣−xbcbc−y0ac−z−ab0∣∣
∣∣
Take −1, b and c common from C1,C2 and C3 respectively.
∴Δ=ax−by+cza∣∣
∣∣xcby0acz−a0∣∣
∣∣
=ax−by+cza[x(0+a2)−y(0+ab)+z(ac+0)]
=(ax−by+cz)2
Note : A skew-symmetric Δ of even order is perfect square but of odd order is zero.