Apply C1+C2+C3 and take out (a+b)2 common from C1
△=(a+b)2∣∣
∣
∣∣1a2b21b22ab12aba2∣∣
∣
∣∣
Apply R2−R1; R3−R1 to make two zeros.
△=(a+b)2∣∣
∣
∣∣1a2b20b2−a2b(2a−b)0a(2b−a)a2−b2∣∣
∣
∣∣
=(a+b)2∣∣∣b2−a2b(2a−b)a(2b−a)a2−b2∣∣∣
=(a+b)2[−(a2−b2)2−ab(2b−a)(2a−b)]
=−(a+b)2[(a2−b2)2+4a2b2−2ab(a2+b2)+a2b2]
=−(a+b)2[(a2−b2)2−2ab(a2+b2)+a2b2]
=−(a+b)2[a2+b2−ab]2=−(a3+b3)2