wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following :
∣ ∣ ∣2aba2b2a2b22abb22aba2∣ ∣ ∣=(a3+b3)2.

Open in App
Solution

Apply C1+C2+C3 and take out (a+b)2 common from C1
=(a+b)2∣ ∣ ∣1a2b21b22ab12aba2∣ ∣ ∣
Apply R2R1; R3R1 to make two zeros.
=(a+b)2∣ ∣ ∣1a2b20b2a2b(2ab)0a(2ba)a2b2∣ ∣ ∣
=(a+b)2b2a2b(2ab)a(2ba)a2b2
=(a+b)2[(a2b2)2ab(2ba)(2ab)]
=(a+b)2[(a2b2)2+4a2b22ab(a2+b2)+a2b2]
=(a+b)2[(a2b2)22ab(a2+b2)+a2b2]
=(a+b)2[a2+b2ab]2=(a3+b3)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon