wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following question.

π402 tan3x dx=1log 2.

Open in App
Solution

Let I=π402 tan3x dx=2π40tan2x.tan x dx=2π40(sec2x1)tan x dx [ 1+tan2x=sec2x]=2[π40sec2x tan x dxπ40tan x dx]=2π40(tan x)sec2x dx2[log |cos x|]π40 [Let, I1=(tan x)sec2x dx put tan x=t sec2x dx=dt I1=t dt=t22=tant2x2]=2[tan2x2]π40+2[logcos π4log |cos 0|]=tan2(π4)0+2 log (12)log 1=1+2 log x120 ( log 1=0)=12×12 log 2=1log 2. hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon