Prove the following question.∫1−1x17 cos4 x dx=0.
Let ∫1−1x17 cos4 x dx=0.⇒ f(−x)=(−x)17cos4(−x)=−x17cos4x=−f(x)
Therefore, f(x) is an odd function.
We know that if f(x) is an odd function, then ∫a−af(x)dx=0
∴ ∫1−1x17cos4 x dx=0. Hence proved.
Note If f(x) is odd, then ∫a−af(x) dx=0
If f(x) is even, then ∫a−af(x) dx=2∫aaf(x) dx
And if f(x) is neither odd nor even, then we do not apply any rule.