Prove the following question.
∫311x2(x+1)dx=23+log23
∫311x2(x+1)dx=23+log23
By using partial fraction method
Let 1x2(x+1)=Ax+Bx2+Cx+1 ..(i)⇒ 1=Ax(x+1)+B(x+1)+Cx2 ..(ii)
Substituting x = 0, -1 in Eq. (ii), we get
1 = B(0+1) and 1 = C(−1)2 ⇒ B = 1 and C = 1
On equating the coefficients of x2 on both sides of Eq.(ii), we get
0 = A + C ⇒ A = -C = -1
∴ ∫311x2(x+1)dx=∫31(−1x+1x2+1x+1)dx=[−log |x|−1x+log |x+1|]31=[log ∣∣x+1x∣∣−1x]31=(log ∣∣43−13∣∣)−(log ∣∣21∣∣−11)=(log 43−log 2)+(1−13) [∵ log (mn)=log m−log n]=log (43×12)+23=log 23+23 Hence proved.