1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Compound Angles
Prove the fol...
Question
Prove the following results:
(i)
cos
-
1
5
13
=
tan
-
1
12
5
(ii)
sin
-
1
-
4
5
=
tan
-
1
-
4
3
=
cos
-
1
-
3
5
-
π
(iii)
tan
cos
-
1
4
5
+
tan
-
1
2
3
=
17
6
(iv)
2
sin
-
1
3
5
=
tan
-
1
24
7
(v)
sin
-
1
5
13
+
cos
-
1
3
5
=
tan
-
1
63
16
Open in App
Solution
(i)
LHS
=
cos
-
1
5
13
=
tan
-
1
1
-
5
13
2
5
13
∵
cos
-
1
x
=
tan
-
1
1
-
x
2
x
=
tan
-
1
12
13
5
13
=
tan
-
1
12
5
=
RHS
(ii)
LHS
=
sin
-
1
-
4
5
=
tan
-
1
-
4
5
1
-
4
5
2
∵
sin
-
1
x
=
tan
-
1
x
1
-
x
2
=
tan
-
1
-
4
5
3
5
=
tan
-
1
-
4
3
=
RHS
Again
,
sin
-
1
-
4
5
=
-
sin
-
1
4
5
=
-
cos
-
1
1
-
4
5
2
∵
sin
-
1
x
=
cos
-
1
1
-
x
2
=
-
cos
-
1
3
5
=
-
π
-
cos
-
1
-
3
5
=
cos
-
1
-
3
5
-
π
(iii)
LHS
=
tan
cos
-
1
4
5
+
tan
-
1
2
3
=
tan
tan
-
1
1
-
4
5
2
4
5
+
tan
-
1
2
3
∵
cos
-
1
x
=
tan
-
1
1
-
x
2
x
=
tan
tan
-
1
3
4
+
tan
-
1
2
3
=
tan
tan
-
1
3
4
+
2
3
1
-
3
4
×
2
3
∵
tan
-
1
x
+
tan
-
1
y
=
tan
-
1
x
+
y
1
-
x
y
=
tan
tan
-
1
17
12
6
12
=
tan
tan
-
1
17
6
=
17
6
=
RHS
(iv)
LHS
=
2
sin
-
1
3
5
=
sin
-
1
2
×
3
5
1
-
9
25
∵
2
sin
-
1
x
=
sin
-
1
2
x
1
-
x
2
=
sin
-
1
6
5
×
4
5
=
sin
-
1
24
25
=
tan
-
1
24
25
1
-
24
25
2
∵
sin
-
1
x
=
tan
-
1
x
1
-
x
2
=
tan
-
1
24
25
7
25
=
tan
-
1
24
7
=
RHS
(v)
LHS
=
sin
-
1
5
13
+
cos
-
1
3
5
=
sin
-
1
5
13
+
cos
-
1
3
5
=
sin
-
1
5
13
+
sin
-
1
1
-
3
5
2
∵
sin
-
1
x
=
cos
-
1
1
-
x
2
=
sin
-
1
5
13
+
sin
-
1
4
5
=
sin
-
1
5
13
1
-
4
5
2
+
4
5
1
-
5
13
2
∵
sin
-
1
x
+
sin
-
1
y
=
sin
-
1
x
1
-
y
2
+
y
1
-
x
2
=
sin
-
1
5
13
×
3
5
+
4
5
×
12
13
=
sin
-
1
3
13
+
48
65
=
sin
-
1
63
65
=
tan
-
1
63
65
1
-
63
65
2
∵
sin
-
1
x
=
tan
-
1
x
1
-
x
2
=
tan
-
1
63
65
16
65
=
tan
-
1
63
16
=
RHS
Suggest Corrections
0
Similar questions
Q.
Prove the following results
(i)
tan
cos
-
1
4
5
+
tan
-
1
2
3
=
17
6
(ii)
cos
sin
-
1
3
5
+
cot
-
1
3
2
=
6
5
13
(iii)
tan
sin
-
1
5
13
+
cos
-
1
3
5
=
63
16
(iv)
sin
cos
-
1
3
5
+
sin
-
1
5
13
=
63
65
Q.
Prove the following results:
(i)
tan
-
1
1
7
+
tan
-
1
1
13
=
tan
-
1
2
9
(ii)
sin
-
1
12
13
+
cos
-
1
4
5
+
tan
-
1
63
16
=
π
(iii)
tan
-
1
1
4
+
tan
-
1
2
9
=
sin
-
1
1
5
Q.
(i)
sin
-
1
63
65
=
sin
-
1
5
13
+
cos
-
1
3
5
(ii)
sin
-
1
5
13
+
cos
-
1
3
5
=
tan
-
1
63
16
(iii)
9
π
8
-
9
4
sin
-
1
1
3
=
9
4
sin
-
1
2
2
3
Q.
Prove the following results:
(i)
tan
-
1
1
7
+
tan
-
1
1
13
=
tan
-
1
2
9
(ii)
tan
-
1
1
4
+
tan
-
1
2
9
=
1
2
cos
-
1
3
5
=
1
2
sin
-
1
4
5
(iii)
tan
-
1
2
3
=
1
2
tan
-
1
12
5
(iv)
tan
-
1
1
7
+
2
tan
-
1
1
3
=
π
4
(v)
sin
-
1
4
5
+
2
tan
-
1
1
3
=
π
2
(vi)
sin
-
1
12
13
+
cos
-
1
4
5
+
tan
-
1
63
16
=
π
(vii)
2
sin
-
1
3
5
-
tan
-
1
17
31
=
π
4
(viii) cot
−1
7 + cot
−1
8 + cot
−1
18 = cot
−1
3
(ix)
2
tan
-
1
1
5
+
tan
-
1
1
8
=
tan
-
1
4
7
(x)
2
tan
-
1
3
4
-
tan
-
1
17
31
=
π
4
(xi)
2
tan
-
1
1
2
+
tan
-
1
1
7
=
tan
-
1
31
17
Q.
Evaluate the following:
(i)
cos
sin
-
1
3
5
(ii)
sin
cos
-
1
4
5
(iii)
cos
sin
-
1
-
3
5
(iv)
tan
cos
-
1
8
17
(v)
cosec
cos
-
1
-
12
13
(vi)
tan
2
tan
-
1
1
5
-
π
4
(vii)
tan
1
2
cos
-
1
5
3
(viii)
sin
1
2
cos
-
1
4
5
(ix)
cos
sin
-
1
3
5
+
sin
-
1
5
13
(x) sin (tan
−1
x + cot
−1
x)
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Compound Angles
MATHEMATICS
Watch in App
Explore more
Trigonometric Ratios of Compound Angles
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app