1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Inequality
Prove the fol...
Question
Prove the following:
sin
2
6
x
−
sin
2
4
x
=
sin
2
x
,
sin
10
x
Open in App
Solution
LHS
=
sin
2
6
x
−
sin
2
4
x
=
(
sin
6
x
+
sin
4
x
)
(
sin
6
x
−
sin
4
x
)
... [
∵
a
2
−
b
2
=
(
a
+
b
)
(
a
−
b
)
]
We know that,
sin
A
+
sin
B
=
2
sin
(
A
+
B
2
)
cos
(
A
−
B
2
)
∴
LHS
=
[
2
sin
(
6
x
+
4
x
2
)
cos
(
6
x
−
4
x
2
)
]
[
2
cos
(
6
x
+
4
x
2
)
sin
(
6
x
−
4
x
2
)
]
=
[
2
sin
(
10
x
2
)
cos
(
2
x
2
)
]
[
2
cos
(
10
x
2
)
sin
(
2
x
2
)
]
=
2
sin
5
x
cos
x
×
2
cos
5
x
sin
x
=
2
sin
5
x
cos
5
x
×
2
sin
x
cos
x
=
sin
10
x
×
sin
2
x
...
[
∵
sin
2
θ
=
2
sin
θ
cos
θ
]
=
RHS
Hence proved.
Suggest Corrections
2
Similar questions
Q.
Prove that:
sin
2
6
x
−
sin
2
4
x
=
sin
2
x
sin
10
x
Q.
sin
2
6
x
– sin
2
4
x
= sin 2
x
sin 10
x