Prove the following:
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
We have
L.H.S = sin 2x + 2 sin 4x + sin 6x
= [sin 4x+ sin 2x] + [sin 6x + sin 4x]
= 2 sin (4x+2x2)cos(4x−2x2)+2sin(6x+4x2)cos(6x−4x2)
[∵sin C+sin D=2sin(C+D2)cos(C−D2)]
= 2 sin 3x cos x+ 2 sin 5x cos x
= 2 cos x [sin 3x+ sin 5x]
=2cosx[2sin(5x+3x2).cos(5x−3x2)]
= 2 cos x [2 sin 4x. cos x]
= 4 cos2 x sin 4x = R.H.S.