wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following:
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x

Open in App
Solution

We have

L.H.S = sin 2x + 2 sin 4x + sin 6x

= [sin 4x+ sin 2x] + [sin 6x + sin 4x]

= 2 sin (4x+2x2)cos(4x2x2)+2sin(6x+4x2)cos(6x4x2)

[sin C+sin D=2sin(C+D2)cos(CD2)]

= 2 sin 3x cos x+ 2 sin 5x cos x
= 2 cos x [sin 3x+ sin 5x]

=2cosx[2sin(5x+3x2).cos(5x3x2)]

= 2 cos x [2 sin 4x. cos x]

= 4 cos2 x sin 4x = R.H.S.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon