Prove the following:
sin (n+1)x sin (n+2)x + cos (n+1)x cos (n+2)x = cos x
We have
L.H.S = sin (n+1)x sin (n+2)x + cos (n+1)x cos (n+2)x = cos x
= cos [(n+1) x-(n+2) x]
[∵ cos(A-b) =cos A cos B + sin A sin B]
= cos [ nx+x - nx -2x]
= cos (-x) = cos x = R.H.S
[∵ cos (−θ) = cos θ]