1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Trigonometric Ratios of Multiples of an Angle
Prove the fol...
Question
Prove the following:
s
i
n
2
x
+
2
s
i
n
4
x
+
s
i
n
6
x
=
4
c
o
s
2
x
s
i
n
4
x
Open in App
Solution
L
H
S
=
s
i
n
2
x
+
2
s
i
n
4
x
+
s
i
n
6
x
=
s
i
n
2
x
+
s
i
n
6
x
+
2
s
i
n
4
x
=
2
sin
(
2
x
+
6
x
2
)
cos
(
2
x
−
6
x
2
)
+
2
s
i
n
4
x
=
2
s
i
n
4
x
[
1
+
cos
2
x
]
=
4
c
o
s
2
x
s
i
n
4
x
=
R
H
S
Hence proved
Suggest Corrections
2
Similar questions
Q.
Prove that:
sin
2
x
+
2
sin
4
x
+
sin
6
x
=
4
cos
2
x
sin
4
x
Q.
sin 2
x
+ 2sin 4
x
+ sin 6
x
= 4cos
2
x
sin 4
x