Prove the following,
tan−1211+tan−1724=tan−112
Given tan−1211+tan−1724=tan−112
LHS=tan−1(211)+tan−1(724)=tan−1(211+7241−211.724)(∵tan−1x+tan−1y=tan−1(x+y1−xy))=tan−1(48+772641−14264)=tan−1(125264264−14264)=tan−1125264250264=tan−1(125264×264250)=tan−112=RHS.
Hence proved.