1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Sin2A and Cos2A in Terms of tanA
Prove the fol...
Question
Prove the following :
tan
8
θ
−
tan
5
θ
−
tan
3
θ
=
tan
8
θ
.
tan
5
θ
.
tan
3
θ
Open in App
Solution
We know that,
tan
(
A
+
B
)
=
tan
A
+
tan
B
1
−
tan
A
tan
B
⇒
tan
A
+
tan
B
=
tan
(
A
+
B
)
(
1
−
tan
A
tan
B
)
∴
L
.
H
.
S
=
tan
8
θ
−
tan
5
θ
−
tan
3
θ
=
tan
8
θ
−
(
tan
5
θ
+
tan
3
θ
)
=
tan
8
θ
−
[
tan
(
5
θ
+
3
θ
)
(
1
−
tan
5
θ
tan
3
θ
)
]
=
tan
8
θ
−
[
tan
8
θ
(
1
−
tan
5
θ
tan
3
θ
)
]
=
tan
8
θ
−
(
tan
8
θ
−
tan
8
θ
tan
5
θ
tan
3
θ
)
=
tan
8
θ
−
tan
8
θ
+
tan
8
θ
tan
5
θ
tan
3
θ
=
0
+
tan
8
θ
tan
5
θ
tan
3
θ
=
tan
8
θ
tan
5
θ
tan
3
θ
=
R
.
H
.
S
Hence, proved.
Suggest Corrections
0
Similar questions
Q.
t
a
n
5
θ
+
t
a
n
3
θ
t
a
n
5
θ
−
t
a
n
3
θ
=
4
c
o
s
2
θ
c
o
s
4
θ
Q.
Assertion :
tan
5
θ
−
tan
3
θ
−
tan
2
θ
=
tan
5
θ
tan
3
θ
tan
2
θ
Reason:
x
=
y
+
z
⇒
tan
x
−
tan
y
−
tan
z
=
tan
x
tan
y
tan
z
.
Q.
Prove
s
e
c
8
θ
−
1
s
e
c
4
θ
−
1
=
t
a
n
8
θ
t
a
n
2
θ
Q.
Prove :
sec
8
θ
−
1
sec
4
θ
−
1
=
tan
8
θ
tan
2
θ
Q.
Prove that tan θ tan (60° − θ) tan (60° + θ) = tan 3θ.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Explore more
Sin2A and Cos2A in Terms of tanA
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app