Prove the following: tanA1+secA-tanA1-secA=2cosecA
To prove tanA1+secA-tanA1-secA=2cosecA.
consider L.H.S.:
LHS=tanA1+secA-tanA1-secA=tanA(1-secA)-tanA(1+secA)(1+secA)(1-secA)=tanA-tanA·secA-tanA-tanA·secA1-sec2A∵(a+b)(a-b)=a2-b2=-2tanA·secA-tan2A∵sec2A-tan2A=1=2secAtanA=2cosA×cosAsinA∵secA=1cosAandtanA=sinAcosA=2sinA=2cosecA=RHS
Thus, LHS=RHS
Hence, tanA1+secA-tanA1-secA=2cosecA is proved.