wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following: tanθ+tan(90°-θ)=secθ·sec(90°-θ)


Open in App
Solution

To prove tanθ+tan(90°-θ)=secθ·sec(90°-θ)

Consider LHS:

LHS=tanθ+tan(90°-θ)=tanθ+cotθtan(90°-θ)=cotθ=sinθcosθ+cosθsinθtanθ=sinθcosθandcotθ=cosθsinθ=sin2θ+cos2θsinθ·cosθ=1sinθ·cosθsin2θ+cos2θ=1=secθ·cosecθ1sinθ=cosecθand1cosθ=secθ=secθ·sec(90°-θ)cosecθ=sec(90°-θ)=RHS

Thus,LHS=RHS

Hence,tanθ+tan(90°-θ)=secθ·sec(90°-θ) is proved


flag
Suggest Corrections
thumbs-up
29
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon