Prove the following: tanθ+tan(90°-θ)=secθ·sec(90°-θ)
To prove tanθ+tan(90°-θ)=secθ·sec(90°-θ)
Consider LHS:
LHS=tanθ+tan(90°-θ)=tanθ+cotθ∵tan(90°-θ)=cotθ=sinθcosθ+cosθsinθ∵tanθ=sinθcosθandcotθ=cosθsinθ=sin2θ+cos2θsinθ·cosθ=1sinθ·cosθ∵sin2θ+cos2θ=1=secθ·cosecθ1sinθ=cosecθand1cosθ=secθ=secθ·sec(90°-θ)∵cosecθ=sec(90°-θ)=RHS
Thus,LHS=RHS
Hence,tanθ+tan(90°-θ)=secθ·sec(90°-θ) is proved