Prove the following:
cos(3π4+x)−cos(3π4−x)=−√2sin x
We have
L.H.S. = cos (3π4+x) - cos (3π4−x)
=-2 sin 3π4sin x
[∵ cos(A+B)- cos (A-B) =-2 sin A sin B]
=- 2 sin (π−π4) sin x
=- 2 sin π4 sin x
[∵ sin (π−θ) = sin θ]
=- 2×1√2 sin x
=- √2 sin x = R.H.S.