Prove the following:
cos(π4−x)cos(π4−y)- sin(π4−x)sin(π4−y) = sin (x+y)
We have
L.H.S = cos (π4−x) cos (π4−y)
-sin (π4−x) sin (π4−y) = cos [π4−x+π4−y]
[∵ cos (A+B) = cos A cos B- sin A sin B]
= cos [π2−(x+y)]
= sin (x+y) = R.H.S.
cos{π/4 - x}cos{π/4 - y} - sin{π/4 - x}sin{π/4 - y} = sin(x+y)