Prove the following trignometric identities:
(1+cot2 A) sin2 A=1
(1 + Cot2 A) Sin2 A = 1
Ans:
We know
cosec2θ−cot2θ=1
=>(1+cot2θ)sin2θ =cosec2θsin2θ
=(cosecθsinθ)2
=(1sinθsinθ)2
=(1)2 = 1
cos2A+11+cot2A=1
(1−cos2 A) cosec2 A=1
(sec2θ−1)(cosec2θ−1)=1
cosec θ√1−cos2θ=1
√1−cos θ1+cos θ=cosec θ−cot θ