Prove the following trignometric identities:
cos2A+11+cot2A=1
We know that,
cos2θ+sin2θ=1
cosec2θ−cot2θ=1
So, cos2A+11+cot2A=cos2A+1cosec2A
=cos2A+1(cosecA)2 = cos2θ+sin2θ
= 1
(1−cos2 A) cosec2 A=1
cosec θ√1−cos2θ=1
(sec2θ−1)(cosec2θ−1)=1
cos θ1+sin θ=1−sin θcos θ
(1+cot2 A) sin2 A=1