Prove the following trignometric identities:
√1−cos θ1+cos θ=cosec θ−cot θ
We know ,
cos2θ+sin2θ=1
Multiplying both numerator and denominator by (1−cosθ), we have
√1−cos θ1+cos θ
= √(1−cos θ)(1−cos θ)(1+cos θ)(1−cos θ)
= √(1−cos θ)2(1−cos2 θ)
= √(1−cos θ)2(sin2 θ)
= (1−cos θ)sin θ
= 1sin θ - cos θsin θ
= cosec θ−cot θ