Prove the following trignometric identities:
tan2θ cos2θ=1−cos2θ
We know ,
sin2θ +cos2θ = 1
So,
tan2θ cos2θ = (tanθ cosθ)2
=(sinθcosθcosθ)2 = (sinθ)2 = sin2θ = 1 - cos2θ
cosec θ√1−cos2θ=1
tan θ+1tan θ=sec θ cosec θ
√1−cos θ1+cos θ=cosec θ−cot θ
(1−cos2 A) cosec2 A=1
cos2A+11+cot2A=1