Prove the following trigonometric identities:
1+cos θ−sin2θsin θ(1+cos θ)=cot θ
Ans:
To prove,
1+cosΘ−sin2ΘsinΘ(1+cosΘ)1+cosΘ−sin2ΘsinΘ(1+cosΘ) = cot ΘΘ
Considering left hand side (LHS),
= 1+cosΘ−(1−cos2Θ)sinΘ(1+cosΘ)1+cosΘ−(1−cos2Θ)sinΘ(1+cosΘ)
= 1+cosΘ−1+cos2ΘsinΘ(1+cosΘ)1+cosΘ−1+cos2ΘsinΘ(1+cosΘ)
= cosΘ+cos2ΘsinΘ(1+cosΘ)cosΘ+cos2ΘsinΘ(1+cosΘ)
= cosΘ(1+cosΘ)sinΘ(1+cosΘ)cosΘ(1+cosΘ)sinΘ(1+cosΘ)
= (cosΘ)(sinΘ)(cosΘ)(sinΘ)
= cotΘcotΘ
Therefore, LHS = RHS
Hence, proved.