Prove the following trigonometric identities:
1−cos θsin θ=sin θ1+cos θ
We know ,
sin2θ+cos2θ=1
Multiplying both numerator and denominator by (1+cosθ), we have
=1−cos2θ(1+cosθ)(sinθ)=(sin2θ)(1+cosθ)(sinθ)=(sinθ)(1+cosθ)
Prove the following trigonometric identities.(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ