Prove the following trigonometric identities:
1sec A−1+1sec A+1=2cosec A cot A
Ans:
To prove,
1secA–1+1secA+1=2cosecAcotA1secA–1+1secA+1=2cosecAcotAConsidering left hand side (LHS),
= secA+1+secA−1(secA+1)(secA−1)secA+1+secA−1(secA+1)(secA−1)
= 2secA(sec2A−1)2secA(sec2A−1)
= 2secA(tan2A)2secA(tan2A)
= 2cos2A(cosAsin2A)2cos2A(cosAsin2A)
= 2cosA(sin2A)2cosA(sin2A)
= 2cosA(sinA)(sinA))2cosA(sinA)(sinA))
= 2cosec A cot A
Therefore, LHS = RHS
Hence proved