Prove the following trigonometric identities:
1−sin θ1+sin θ=(sec θ−tan θ)2
Taking LHS we have
→ 1−Sinθ1+Sinθ
Dividing both the numerator and denominator with (Cosθ) we have
→(1−sinθcosθ1+sinθcosθ)
→ (Secθ−Tanθ)(Secθ+Tanθ)
Now rationalising the denominator we have
→ (Secθ−Tanθ)(Secθ+Tanθ) (Secθ−Tanθ)(Secθ−Tanθ)
We know that Sec2θ –Tan2θ =1
→ (Secθ−Tanθ)2 = RHS
Hence proved.