Prove the following trigonometric identities:
1+sin θcos θ+cos θ1+sin θ=2 sec θ
We know that cos2θ+sin2θ=1
sec θ=1cos θ
LHS=1+sinθcosθ+cosθ1+sinθ
=(1+sinθ)×(1+sinθ)+cosθ×cosθcosθ(1+sinθ)
=(1+sinθ)2+cos2θcosθ(1+sinθ)
=1+2sinθ+sin2θ+cos2θcosθ(1+sinθ)
=1+2sinθ+1cosθ(1+sinθ)
=2+2sinθcosθ(1+sinθ)
=2(1+sinθ)cosθ(1+sinθ)
=2cosθ
=2secθ=RHS