Prove the following trigonometric identities:
1+tan2θ1+cot2θ=(1−tan θ1−cot θ)2=tan2θ
We know that sec2θ=1+tan2θ and cosec2θ=1+cot2θ
secθ=1cosθ
cosecθ=1sinθ
LHS=1+tan2θ1+cot2θ
=sec2θcosec2θ
=(secθcosecθ)2
=(1cosθ×sinθ)2
=(sinθcosθ)2
=(tanθ)2
=tan2θ =RHS