Prove the following trigonometric identities:
sec A−tan Asec A+tan A=cos2A(1+sin A)2
We know that sec2 A−tan2 A=1
LHS=sec A−tan Asec A+tan A
Multiply both denominator and numerator with sec A+tan A
=(sec A−tan A)(sec A+tan A)(sec A+tan A)(sec A+tan A)
=sec2 A−tan2 A(sec A+tan A)2
=1(sec2 A+ tan2 A+2secA tanA)
=1(1cos2 A+sin2Acos2A+2×1cosA×sinAcosA)
=1(1cos2 A+sin2Acos2A+2×sinAcos2A)
=1(1+sin2A+ 2sinAcos2 A)
=cos2 A1+sin2A+ 2sinA
=cos2 A(1+sinA)2
=RHS