Prove the following trigonometric identities:
tan θ1−cot θ+cot θ1−tan θ=1+tan θ+cot θ
Ans:
LHS = tanθ1−1tanθ+cotθ1−tanθtanθ1−1tanθ+cotθ1−tanθ
= tan2θtanθ−1+cotθ1−tanθtan2θtanθ−1+cotθ1−tanθ
= 11−tanθ[1tanθ−tan2θ]11−tanθ[1tanθ−tan2θ]
= 11−tanθ[1−tan3θtanθ]11−tanθ[1−tan3θtanθ]
= 11−tanθ(1−tanθ)(1+tanθ+tan2θ)tanθ11−tanθ(1−tanθ)(1+tanθ+tan2θ)tanθ
[Since , a3−b3=(a−b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2)]
= 1+tanθ+tan2θtanθ1+tanθ+tan2θtanθ
= 1tanθ+tanθtanθ+tan2θtanθ1tanθ+tanθtanθ+tan2θtanθ
= 1+tanθ+cotθ1+tanθ+cotθ