wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following trigonometric identities:

tan θ1cot θ+cot θ1tan θ=1+tan θ+cot θ

Open in App
Solution

Ans:

LHS = tanθ11tanθ+cotθ1tanθtanθ11tanθ+cotθ1tanθ

= tan2θtanθ1+cotθ1tanθtan2θtanθ1+cotθ1tanθ

= 11tanθ[1tanθtan2θ]11tanθ[1tanθtan2θ]

= 11tanθ[1tan3θtanθ]11tanθ[1tan3θtanθ]

= 11tanθ(1tanθ)(1+tanθ+tan2θ)tanθ11tanθ(1tanθ)(1+tanθ+tan2θ)tanθ
[Since , a3b3=(ab)(a2+ab+b2)a3b3=(ab)(a2+ab+b2)]

= 1+tanθ+tan2θtanθ1+tanθ+tan2θtanθ

= 1tanθ+tanθtanθ+tan2θtanθ1tanθ+tanθtanθ+tan2θtanθ

= 1+tanθ+cotθ1+tanθ+cotθ


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon