wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following trigonometric identities.
(i) 1+cosθ+sinθ1+cosθsinθ=1+sinθcosθ

(ii) sinθcosθ+1sinθ+cosθ1=1secθtanθ

(iii) cosθsinθ+1cosθ+sinθ1=cosecθ+cotθ

(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ

Open in App
Solution

(i) We have to prove the following identity-

1+cosθ+sinθ1+cosθsinθ=1+sinθcosθ

Consider the LHS.

1+cosθ+sinθ1+cosθsinθ
=[1+cosθ+sinθ1+cosθsinθ][1+cosθ+sinθ1+cosθ+sinθ]

=(1+cosθ+sinθ)2(1+cosθ)2sin2θ

=(1+cosθ)2+sin2θ+2(1+cosθ)sinθ1+cos2θ+2cosθsin2θ

=1+cos2θ+2cosθ+sin2θ+2sinθ+2sinθcosθ1+cos2θ+2cosθsin2θ

=2+2(cosθ+sinθ+sinθcosθ)2cos2θ+2cosθ [cos2θ+sin2θ=1]

=2(1+cosθ+sinθ+sinθcosθ)2cosθ(1+cosθ)

=2[1+cosθ+sinθ(1+cosθ)]2cosθ(1+cosθ)

=2(1+cosθ)(1+sinθ)]2cosθ(1+cosθ)

=(1+sinθ)cosθ= RHS

Hence proved.

(ii) We have to prove the following identity-

sinθcosθ+1sinθ+cosθ1=1secθtanθ

Consider the LHS.

sinθcosθ+1sinθ+cosθ1

=[sinθcosθ+1sinθ+cosθ1][sinθcosθ+1sinθ+cosθ+1]

=(sinθ+1)2cos2θ(sinθ+cosθ)21

=sin2θ+1+2sinθcos2θsin2θ+cos2θ+2sinθcosθ1

=2sin2θ+2sinθ2sinθcosθ

=2sinθ(1+sinθ)2sinθcosθ

=(1+sinθ)cosθ

=[(1+sinθ)cosθ][(1sinθ)(1sinθ)]

=[(1sin2θ)cosθ(1sinθ)]

=[(cosθ)(1sinθ)]

=[1(secθtanθ)]=RHS [Divide numerator and denominator by cosθ]

Hence proved.

(iii) We have to prove the following identity-

cosθsinθ+1cosθ+sinθ1=cosecθ+cotθ

Consider the LHS.

cosθsinθ+1cosθ+sinθ1

=cosθsinθ+1cosθ+sinθ1×cosθ+sinθ+1cosθ+sinθ+1

=(cosθ+1)2sin2θ(cosθ+sinθ)212

=cos2θ+1+2cosθsin2θcos2θ+sin2θ+2cosθsinθ1

=cos2θ+1+2cosθ(1cos2θ)1+2cosθsinθ1

=2cos2θ+2cosθ2cosθsinθ

=2cosθ(cosθ+1)2 cosθsinθ

=cosθ+1sinθ

=cosθsinθ+1sinθ

=cotθ+cosecθ= RHS

Hence proved.
(iv)
(sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ

Consider the LHS.

(sinθ+cosθ)(tanθ+cotθ)

=(sinθ+cosθ)(sinθcosθ+cosθsinθ)

=(sinθ+cosθ)(sin2θ+cos2θsinθcosθ) [sin2θ+cos2θ=1]

=(sinθ+cosθ)1sinθcosθ

=(sinθ+cosθ)(sinθcosθ)

=1cosθ+1sinθ

=secθ+cosecθ
= RHS
Hence proved.


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Evaluation of Determinants
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon