Prove the following trigonometric identities.
(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ
(i) We have to prove the following identity-
1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
Consider the LHS.
1+cosθ+sinθ1+cosθ−sinθ
=[1+cosθ+sinθ1+cosθ−sinθ][1+cosθ+sinθ1+cosθ+sinθ]
=(1+cosθ+sinθ)2(1+cosθ)2−sin2θ
=(1+cosθ)2+sin2θ+2(1+cosθ)sinθ1+cos2θ+2cosθ−sin2θ
=1+cos2θ+2cosθ+sin2θ+2sinθ+2sinθcosθ1+cos2θ+2cosθ−sin2θ
=2+2(cosθ+sinθ+sinθcosθ)2cos2θ+2cosθ [∵cos2θ+sin2θ=1]
=2(1+cosθ+sinθ+sinθcosθ)2cosθ(1+cosθ)
=2[1+cosθ+sinθ(1+cosθ)]2cosθ(1+cosθ)
=2(1+cosθ)(1+sinθ)]2cosθ(1+cosθ)
=(1+sinθ)cosθ= RHS
Hence proved.
(ii) We have to prove the following identity-
sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
Consider the LHS.
sinθ−cosθ+1sinθ+cosθ−1
=[sinθ−cosθ+1sinθ+cosθ−1][sinθ−cosθ+1sinθ+cosθ+1]
=(sinθ+1)2−cos2θ(sinθ+cosθ)2−1
=sin2θ+1+2sinθ−cos2θsin2θ+cos2θ+2sinθcosθ−1
=2sin2θ+2sinθ2sinθcosθ
=2sinθ(1+sinθ)2sinθcosθ
=(1+sinθ)cosθ
=[(1+sinθ)cosθ][(1−sinθ)(1−sinθ)]
=[(1−sin2θ)cosθ(1−sinθ)]
=[(cosθ)(1−sinθ)]
=[1(secθ−tanθ)]=RHS [Divide numerator and denominator by cosθ]
Hence proved.
(iii) We have to prove the following identity-
cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
Consider the LHS.
cosθ−sinθ+1cosθ+sinθ−1
=cosθ−sinθ+1cosθ+sinθ−1×cosθ+sinθ+1cosθ+sinθ+1
=(cosθ+1)2−sin2θ(cosθ+sinθ)2−12
=cos2θ+1+2cosθ−sin2θcos2θ+sin2θ+2cosθsinθ−1
=cos2θ+1+2cosθ−(1−cos2θ)1+2cosθsinθ−1
=2cos2θ+2cosθ2cosθsinθ
=2cosθ(cosθ+1)2 cosθsinθ
=cosθ+1sinθ
=cosθsinθ+1sinθ
=cotθ+cosecθ= RHS
Hence proved.
(iv)
(sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ
Consider the LHS.
(sinθ+cosθ)(tanθ+cotθ)
=(sinθ+cosθ)(sinθcosθ+cosθsinθ)
=(sinθ+cosθ)(sin2θ+cos2θsinθcosθ) [∵sin2θ+cos2θ=1]
=(sinθ+cosθ)1sinθcosθ
=(sinθ+cosθ)(sinθcosθ)
=1cosθ+1sinθ
=secθ+cosecθ
= RHS
Hence proved.