wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following trigonometric identities:

Prove that:

(i) sec θ1sec θ+1+sec θ+1sec θ1=2 cosec θ

(ii) 1+sin θ1sin θ+1sin θ1+sin θ=2 cosec θ

(iii) 1+cos θ1cos θ+1cos θ1+cos θ=2 cosec θ

(iv) sec θ1sec θ+1=(sin θ1+cos θ)2

Open in App
Solution

(i) (secΘ1)(secΘ+1)+(secΘ+1)(secΘ1)(secΘ1)(secΘ+1)+(secΘ+1)(secΘ1) = 2cosec ΘΘ

Ans:

To prove,

= (secΘ1)(secΘ+1)+(secΘ+1)(secΘ1)(secΘ1)(secΘ+1)+(secΘ+1)(secΘ1) = 2cosec ΘΘ

Considering left hand side (LHS),

Rationalize the numerator and denominator.

= (secΘ1)(secΘ1)(secΘ+1)(secΘ1)+(secΘ+1)(secΘ+1)(secΘ1)(secΘ+1)(secΘ1)(secΘ1)(secΘ+1)(secΘ1)+(secΘ+1)(secΘ+1)(secΘ1)(secΘ+1)

= (secΘ1)2(sec2Θ1)+(secΘ+1)2(sec2Θ1)(secΘ1)2(sec2Θ1)+(secΘ+1)2(sec2Θ1)

= (secΘ1)2tan2Θ+(secΘ+1)2tan2Θ(secΘ1)2tan2Θ+(secΘ+1)2tan2Θ

= (secΘ1)tanΘ+(secΘ+1)tanΘ(secΘ1)tanΘ+(secΘ+1)tanΘ

= (secΘ1+secΘ+1)tanΘ(secΘ1+secΘ+1)tanΘ

= (2cosΘ)cosΘsinΘ(2cosΘ)cosΘsinΘ

= 2sinΘ2sinΘ

= 2cosec ΘΘ

Therefore, LHS = RHS

Hence proved

(ii) (1+sinΘ)(1sinΘ)+(1sinΘ)(1+sinΘ)(1+sinΘ)(1sinΘ)+(1sinΘ)(1+sinΘ) = 2sec ΘΘ

Ans:

To prove,

= (1+sinΘ)(1sinΘ)+(1sinΘ)(1+sinΘ)(1+sinΘ)(1sinΘ)+(1sinΘ)(1+sinΘ) = 2sec ΘΘ

Considering left hand side (LHS),

Rationalize the numerator and denominator.

= (1+sinΘ)(1+sinΘ)(1sinΘ)(1+sinΘ)+(1sinΘ)(1sinΘ)(1+sinΘ)(1sinΘ)(1+sinΘ)(1+sinΘ)(1sinΘ)(1+sinΘ)+(1sinΘ)(1sinΘ)(1+sinΘ)(1sinΘ)

= (1+sinΘ)2(1sin2Θ)+(1sinΘ)2(1sin2Θ)(1+sinΘ)2(1sin2Θ)+(1sinΘ)2(1sin2Θ)

= (1+sinΘ)2(cos2Θ)+(1sinΘ)2(cos2Θ)(1+sinΘ)2(cos2Θ)+(1sinΘ)2(cos2Θ)

= (1+sinΘ)(cosΘ)+(1sinΘ)(cosΘ)(1+sinΘ)(cosΘ)+(1sinΘ)(cosΘ)

= (1+sinΘ+1sinΘ)(cosΘ)(1+sinΘ+1sinΘ)(cosΘ)

= (2)(cosΘ)(2)(cosΘ)

= 2secΘ2secΘ

Therefore, LHS = RHS

Hence proved

(iii) (1+cosΘ)(1cosΘ)(1+cosΘ)(1cosΘ) \sqrt{\frac{(1-cos \Theta)}{(1+cos \Theta)}} = 2cosecΘ2cosecΘ

Ans:

To prove,

(1cosΘ)(1+cosΘ)+(1+cosΘ)(1cosΘ)(1cosΘ)(1+cosΘ)+(1+cosΘ)(1cosΘ) = 2cosec \Theta

Considering left hand side (LHS),

Rationalize the numerator and denominator.

= (1cosΘ)(1cosΘ)(1+cosΘ)(1cosΘ)+(1+cosΘ)(1+cosΘ)(1cosΘ)(1+cosΘ)(1cosΘ)(1cosΘ)(1+cosΘ)(1cosΘ)+(1+cosΘ)(1+cosΘ)(1cosΘ)(1+cosΘ)

= (1cosΘ)2(1cos2Θ)+(1+cosΘ)2(1cos2Θ)(1cosΘ)2(1cos2Θ)+(1+cosΘ)2(1cos2Θ)

= (1cosΘ)2(sin2Θ)+(1+cosΘ)2(sin2Θ)(1cosΘ)2(sin2Θ)+(1+cosΘ)2(sin2Θ)

= (1cosΘ)(sinΘ)+(1+cosΘ)(sinΘ)(1cosΘ)(sinΘ)+(1+cosΘ)(sinΘ)

= (1cosΘ+1+cosΘ)(sinΘ)(1cosΘ+1+cosΘ)(sinΘ)

= (2)(sinΘ)(2)(sinΘ)

= 2cosec \Theta

Therefore, LHS = RHS

Hence proved

(iv) secΘ1secΘ+1secΘ1secΘ+1 = (sinΘ1+cosΘ)2(sinΘ1+cosΘ)2

Ans:

To prove,

secΘ1secΘ+1secΘ1secΘ+1 = (sinΘ1+cosΘ)2(sinΘ1+cosΘ)2

Considering left hand side (LHS),

= secΘ1secΘ+1secΘ1secΘ+1

= 1cosΘ1+cosΘ1cosΘ1+cosΘ

Multiply and divide with (1+cosΘΘ)

= (1cosΘ)(1+cosΘ)(1+cosΘ)(1+cosΘ)(1cosΘ)(1+cosΘ)(1+cosΘ)(1+cosΘ)

= (1cos2Θ)(1+cosΘ)2(1cos2Θ)(1+cosΘ)2

= (sin2Θ)(1+cosΘ)2(sin2Θ)(1+cosΘ)2

= (sinΘ1+cosΘ)2(sinΘ1+cosΘ)2

Therefore, LHS = RHS

Hence proved


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon