Prove the following trigonometric identities:
Prove that:
(i) √sec θ−1sec θ+1+√sec θ+1sec θ−1=2 cosec θ
(ii) √1+sin θ1−sin θ+√1−sin θ1+sin θ=2 cosec θ
(iii) √1+cos θ1−cos θ+√1−cos θ1+cos θ=2 cosec θ
(iv) sec θ−1sec θ+1=(sin θ1+cos θ)2
(i) √(secΘ−1)(secΘ+1)+√(secΘ+1)(secΘ−1)(secΘ−1)(secΘ+1)−−−−−−√+(secΘ+1)(secΘ−1)−−−−−−√ = 2cosec ΘΘ
Ans:
To prove,
= √(secΘ−1)(secΘ+1)+√(secΘ+1)(secΘ−1)(secΘ−1)(secΘ+1)−−−−−−√+(secΘ+1)(secΘ−1)−−−−−−√ = 2cosec ΘΘ
Considering left hand side (LHS),
Rationalize the numerator and denominator.
= √(secΘ−1)(secΘ−1)(secΘ+1)(secΘ−1)+√(secΘ+1)(secΘ+1)(secΘ−1)(secΘ+1)(secΘ−1)(secΘ−1)(secΘ+1)(secΘ−1)−−−−−−−−−−−−√+(secΘ+1)(secΘ+1)(secΘ−1)(secΘ+1)−−−−−−−−−−−−√
= √(secΘ−1)2(sec2Θ−1)+√(secΘ+1)2(sec2Θ−1)(secΘ−1)2(sec2Θ−1)−−−−−−−√+(secΘ+1)2(sec2Θ−1)−−−−−−−√
= √(secΘ−1)2tan2Θ+√(secΘ+1)2tan2Θ(secΘ−1)2tan2Θ−−−−−−−√+(secΘ+1)2tan2Θ−−−−−−−√
= (secΘ−1)tanΘ+(secΘ+1)tanΘ(secΘ−1)tanΘ+(secΘ+1)tanΘ
= (secΘ−1+secΘ+1)tanΘ(secΘ−1+secΘ+1)tanΘ
= (2cosΘ)cosΘsinΘ(2cosΘ)cosΘsinΘ
= 2sinΘ2sinΘ
= 2cosec ΘΘ
Therefore, LHS = RHS
Hence proved
(ii) √(1+sinΘ)(1−sinΘ)+√(1−sinΘ)(1+sinΘ)(1+sinΘ)(1−sinΘ)−−−−−−√+(1−sinΘ)(1+sinΘ)−−−−−−√ = 2sec ΘΘ
Ans:
To prove,
= √(1+sinΘ)(1−sinΘ)+√(1−sinΘ)(1+sinΘ)(1+sinΘ)(1−sinΘ)−−−−−−√+(1−sinΘ)(1+sinΘ)−−−−−−√ = 2sec ΘΘ
Considering left hand side (LHS),
Rationalize the numerator and denominator.
= √(1+sinΘ)(1+sinΘ)(1−sinΘ)(1+sinΘ)+√(1−sinΘ)(1−sinΘ)(1+sinΘ)(1−sinΘ)(1+sinΘ)(1+sinΘ)(1−sinΘ)(1+sinΘ)−−−−−−−−−−−−√+(1−sinΘ)(1−sinΘ)(1+sinΘ)(1−sinΘ)−−−−−−−−−−−−√
= √(1+sinΘ)2(1−sin2Θ)+√(1−sinΘ)2(1−sin2Θ)(1+sinΘ)2(1−sin2Θ)−−−−−−−√+(1−sinΘ)2(1−sin2Θ)−−−−−−−√
= √(1+sinΘ)2(cos2Θ)+√(1−sinΘ)2(cos2Θ)(1+sinΘ)2(cos2Θ)−−−−−−−√+(1−sinΘ)2(cos2Θ)−−−−−−−√
= (1+sinΘ)(cosΘ)+(1−sinΘ)(cosΘ)(1+sinΘ)(cosΘ)+(1−sinΘ)(cosΘ)
= (1+sinΘ+1−sinΘ)(cosΘ)(1+sinΘ+1−sinΘ)(cosΘ)
= (2)(cosΘ)(2)(cosΘ)
= 2secΘ2secΘ
Therefore, LHS = RHS
Hence proved
(iii) √(1+cosΘ)(1−cosΘ)(1+cosΘ)(1−cosΘ)−−−−−−√ \sqrt{\frac{(1-cos \Theta)}{(1+cos \Theta)}} = 2cosecΘ2cosecΘ
Ans:
To prove,
√(1−cosΘ)(1+cosΘ)+√(1+cosΘ)(1−cosΘ)(1−cosΘ)(1+cosΘ)−−−−−−√+(1+cosΘ)(1−cosΘ)−−−−−−√ = 2cosec \Theta
Considering left hand side (LHS),
Rationalize the numerator and denominator.
= √(1−cosΘ)(1−cosΘ)(1+cosΘ)(1−cosΘ)+√(1+cosΘ)(1+cosΘ)(1−cosΘ)(1+cosΘ)(1−cosΘ)(1−cosΘ)(1+cosΘ)(1−cosΘ)−−−−−−−−−−−−√+(1+cosΘ)(1+cosΘ)(1−cosΘ)(1+cosΘ)−−−−−−−−−−−−√
= √(1−cosΘ)2(1−cos2Θ)+√(1+cosΘ)2(1−cos2Θ)(1−cosΘ)2(1−cos2Θ)−−−−−−−√+(1+cosΘ)2(1−cos2Θ)−−−−−−−√
= √(1−cosΘ)2(sin2Θ)+√(1+cosΘ)2(sin2Θ)(1−cosΘ)2(sin2Θ)−−−−−−−√+(1+cosΘ)2(sin2Θ)−−−−−−−√
= (1−cosΘ)(sinΘ)+(1+cosΘ)(sinΘ)(1−cosΘ)(sinΘ)+(1+cosΘ)(sinΘ)
= (1−cosΘ+1+cosΘ)(sinΘ)(1−cosΘ+1+cosΘ)(sinΘ)
= (2)(sinΘ)(2)(sinΘ)
= 2cosec \Theta
Therefore, LHS = RHS
Hence proved
(iv) secΘ−1secΘ+1secΘ−1secΘ+1 = (sinΘ1+cosΘ)2(sinΘ1+cosΘ)2
Ans:
To prove,
secΘ−1secΘ+1secΘ−1secΘ+1 = (sinΘ1+cosΘ)2(sinΘ1+cosΘ)2
Considering left hand side (LHS),
= secΘ−1secΘ+1secΘ−1secΘ+1
= 1−cosΘ1+cosΘ1−cosΘ1+cosΘ
Multiply and divide with (1+cosΘΘ)
= (1−cosΘ)(1+cosΘ)(1+cosΘ)(1+cosΘ)(1−cosΘ)(1+cosΘ)(1+cosΘ)(1+cosΘ)
= (1−cos2Θ)(1+cosΘ)2(1−cos2Θ)(1+cosΘ)2
= (sin2Θ)(1+cosΘ)2(sin2Θ)(1+cosΘ)2
= (sinΘ1+cosΘ)2(sinΘ1+cosΘ)2
Therefore, LHS = RHS
Hence proved