Prove the following trigonometric identities:
sec A(1−sin A)(sec A+tan A)=1
Given,
L.H.S = secA(1 – sinA)(secA + tanA)
Here, secA = 1cosA and tanA = sinAcosA
=> 1cosA×(1–sinA)×(1cosA + sinAcosA)
Take 1cosA outside from the brackets,
=> 1cosA×(1–sinA)×(1cosA(1+sinA)
=>1cos2A (1 – sinA) (1+sinA)
=>1cos2A (1–sin2A)
=> (1–sin2A)cos2A
=> 1cos2A−sin2Acos2A
=> sec2A−tan2A=1=RHS