Prove the following trigonometric identities:
sin2A+11+tan2A=1
We know that,
cos2A+sin2A=1
sec2A−tan2A=1
So, sin2A+11+tan2A=sin2A+1sec2A
=sin2A+1(secA)2 = sin2θ+cos2θ
= 1
(1+tan2A)+(1+1tan2A)=1sin2A−sin4A