Prove the following trigonometric identities:
tan2θ−sin2θ=tan2θsin2θ
Taking LHS we have
tan2θ–sin2θ
→ We know that sin2θcos2θ=tan2θ so substituting we have
→ sin2θcos2θ- sin2θ
→ sin2θ−sin2θcos2θcos2θ
→ sin2θ(1−cos2θ)cos2θ
→ sin2θ tan2θ
→ RHS
Hence proved.