wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following using properties of determinants:
∣ ∣ ∣1+a2abacab1+b2bccacb1+c2∣ ∣ ∣=1+a2+b2+c2

Open in App
Solution

Given that,
∣ ∣ ∣1+a2abacab1+b2bccacb1+c2∣ ∣ ∣
Now,
1abc∣ ∣ ∣a(a2+1)ab2ac2a2bb(1+b2)bc2a2ccb2c(1+c2)∣ ∣ ∣
Multiplying c1,c2,c3 by a,b,c
∣ ∣ ∣a2+1b2c2a21+b2c2a2b21+c2∣ ∣ ∣
Takinga.b.c common from R1,R2,R3 respectively.
∣ ∣ ∣1+a2+b2+c2b2c21+a2+b2+c21+b2c21+a2+b2+c2b21+c2∣ ∣ ∣=(1+a2+b2+c2)∣ ∣ ∣1b2c21b2+1c21b2c2+1∣ ∣ ∣=(1+a2+b2+c2)∣ ∣1b2c2010001∣ ∣
R2R2R1R3R3R1
1+a2+b2+c2
Hence,Proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon