LHS=∣∣
∣∣a+b+2cabcb+c+2abcac+a+2b∣∣
∣∣
Applying C1 to C1+C2+C3
∣∣
∣∣2a+2b+2cab2a+2b+2cb+c+2ab2a+2b+2cac+a+2b∣∣
∣∣
=(2a+2b+2c)∣∣
∣∣1ab1b+c+2ab1ac+a+2b∣∣
∣∣
Applying R2⇒R2−R1
R3⇒R3−R1
=(2a+2b+2c)∣∣
∣∣1ab0b+c+a000c+a+b∣∣
∣∣
Expanding along third row, we get
=2(a+b+c)[(b+c+a)2−0]
=2(a+b+c)3= RHS
Hence proved.